Part Number Hot Search : 
FAN7024 RODUCT 0LVEL 16245 BAT46ZFI 2N339 MGFC3 TA0872A
Product Description
Full Text Search
 

To Download CS4348-CZZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CS4344/5/6/8 10-Pin, 24-Bit, 192 kHz Stereo D/A Converter
Features
Multi-bit Delta-Sigma Modulator 24-Bit Conversion Automatically Detects Sample Rates up to 192 kHz 105 dB Dynamic Range -95 dB THD+N Low Clock Jitter Sensitivity Single +3.3 V or +5 V Power Supply Filtered Line Level Outputs On-Chip Digital De-emphasis PopguardTM Technology Small 10-Pin TSSOP Package
Description
The CS4344 family members are complete, stereo digital-to-analog output systems including interpolation, multi-bit D/A conversion and output analog filtering in a 10-pin package. The CS4344/5/6/8 support all major audio data interface formats, and the individual devices differ only in the supported interface format. The CS4344 family is based on a fourth order multi-bit delta-sigma modulator with a linear analog low-pass filter. This family also includes auto-speed mode detection using both sample rate and master clock ratio as a method of auto-selecting sampling rates between 2 kHz and 200 kHz. The CS4344 family contains on-chip digital de-emphasis, operates from a single +3.3 V or +5 V power supply, and requires minimal support circuitry. These features are ideal for DVD players & recorders, digital televisions, home theater and set top box products, and automotive audio systems. ORDERING INFORMATION See page 19
I
3.3 V o r 5 V
D e -e m p h a sis
In te rp o la tio n Filte r
M u ltib it M o d u la to r
Sw itc h e d C a p a c ito r DA C a nd Filte r
Le ft O u tp u t
Se ria l A u d io In p u t
PC M Se ria l In te rfa c e
In te rp o la tio n Filte r
M u ltib it M o d u la to r
Sw itc h e d C a p a c ito r DA C a nd Filte r In te rn a l V o lta g e Re fe re n c e
Rig h t O u tp u t
Preliminary Product Information
http://www.cirrus.com
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
Copyright (c) Cirrus Logic, Inc. 2004 (All Rights Reserved)
Sep `04 DS613PP2
CS4344/5/6/8
Revision History Release A1 PP1 Date SEP 2003 JUN 2004 Changes Initial Release Updated Minimum Voltage Condition on page 5 Updated Analog Dynamic Performance for 3.3 V operation on page 6 Updated Full Scale Output Voltage on page 6 Updated "High-Level Input Voltage" on page 8 Updated Current Consumption Specifications on page 8 Corrected specifications for "Internal SCLK Mode" on page 9 Updated VQ in "Recommended Connection Diagram" on page 11 Updated Ramp Times for "Output Transient Control" on page 15 Updated Legal Notice Update lead-free device ordering info.
PP2
Sep 2004
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to www.cirrus.com
IMPORTANT NOTICE "Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
2
DS613PP2
CS4344/5/6/8
TABLE OF CONTENTS
1. PIN DESCRIPTIONS ................................................................................................................ 4 2. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 5 SPECIFIED OPERATING CONDITIONS ................................................................................. 5 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 5 DAC ANALOG CHARACTERISTICS ....................................................................................... 6 COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .......................... 7 DIGITAL INPUT CHARACTERISTICS ..................................................................................... 8 POWER AND THERMAL CHARACTERISTICS ...................................................................... 8 SWITCHING CHARACTERISTICS - SERIAL AUDIO INTERFACE ........................................ 9 3. TYPICAL CONNECTION DIAGRAM ..................................................................................... 11 4. APPLICATIONS ..................................................................................................................... 12 4.1 Master Clock .................................................................................................................... 12 4.2 Serial Clock ..................................................................................................................... 12 4.2.1 External Serial Clock Mode ................................................................................. 12 4.2.2 Internal Serial Clock Mode .................................................................................. 13 4.3 De-Emphasis ................................................................................................................... 14 4.4 Initialization and Power-Down ......................................................................................... 15 4.5 Output Transient Control ................................................................................................. 15 4.5.1 Power-up ............................................................................................................. 15 4.5.2 Power-down ........................................................................................................ 15 4.6 Grounding and Power Supply Decoupling ....................................................................... 17 4.7 Analog Output and Filtering ............................................................................................. 17 5. PARAMETER DEFINITIONS .................................................................................................. 18 6. ORDER INFORMATION:.................................................................................................... 19 7. FUNCTIONAL COMPATIBILITY ............................................................................................ 19 8. PACKAGE DIMENSIONS ...................................................................................................... 20 9. APPENDIX .............................................................................................................................. 21
DS613PP2
3
CS4344/5/6/8
1.PIN DESCRIPTIONS
SDIN DEM/SCLK LRCK MCLK VQ
1 2 3 4 5 10 9 8 7 6
AOUTR VA GND AOUTL FILT+
Pin Name SDIN DEM/SCLK LRCK MCLK VQ FILT+ AOUTL GND VA AOUTR
# 1 2 3 4 5 6 7 8 9
Pin Description Serial Audio Data Input (Input) - Input for two's complement serial audio data. De-Emphasis/External Serial Clock Input (Input) - used for de-emphasis filter control or external serial clock input. Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio data line. Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. Left Channel Analog Output (Output) - The full scale analog output level is specified in the Analog Characteristics specification table. Ground (Input) - ground reference. Analog Power (Input) - Positive power for the analog and digital sections.
10 Right Channel Analog Output (Output) - The full scale analog output level is specified in the Analog Characteristics specification table.
4
DS613PP2
CS4344/5/6/8
2.CHARACTERISTICS AND SPECIFICATIONS
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at nominal supply voltage and TA = 25C.)
SPECIFIED OPERATING CONDITIONS (AGND = 0 V; all voltages with respect to ground.)
Parameters DC Power Supply Specified Temperature Range -CZZ -DZZ Symbol VA TA Min 4.75 3.00 -10 -40 Nom 5.0 3.3 Max 5.25 3.47 +70 +85 Units V V C C
ABSOLUTE MAXIMUM RATINGS (AGND = 0 V; all voltages with respect to ground.)
Parameters DC Power Supply Input Current, Any Pin Except Supplies Digital Input Voltage Ambient Operating Temperature (power applied) Storage Temperature Symbol VA Iin VIND Top Tstg Min -0.3 -0.3 -55 -65 Max 6.0 10 VA+0.4 125 150 Units V mA V C C
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.
DS613PP2
5
CS4344/5/6/8
DAC ANALOG CHARACTERISTICS (Full-Scale Output Sine Wave, 997 Hz (Note 1), Fs = 48/96/192 kHz; Test load RL = 3 k, CL = 10 pF (see Figure 1). Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified.)
5 V Nom Parameter Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit A-weighted unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB A-weighted unweighted A-weighted unweighted 0 dB -20 dB -60 dB 0 dB -20 dB -60 dB Min 99 96 90 87 95 92 86 83 Typ 105 102 96 93 -95 -82 -42 -93 -73 -33 105 102 96 93 -95 -82 -42 -93 -73 -33 Max -89 -76 -36 -87 -67 -27 -85 -72 -32 -83 -63 -23 Min 97 94 90 87 93 90 86 83 Dynamic Performance for CS4344/5/6/8-CZZ (-10 to 70C) 103 100 96 93 -95 -80 -40 -93 -73 -33 103 100 96 93 -95 -80 -40 -93 -73 -33 -89 -74 -34 -87 -67 -27 -85 -70 -30 -83 -63 -23 dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB 3.3 V Nom Typ Max Unit
Dynamic Performance for CS4344-DZZ (-40 to 85C) Dynamic Range 18 to 24-Bit 16-Bit Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit
Note:
1. One-half LSB of triangular PDF dither added to data.
DAC ANALOG CHARACTERISTICS - ALL MODES
Parameter Interchannel Isolation DC Accuracy Interchannel Gain Mismatch Gain Drift Analog Output Full Scale Output Voltage Quiescent Voltage Max DC Current draw from an AOUT pin Max Current draw from VQ Max AC-Load Resistance (see Figure 2 on page 8) Max Load Capacitance (see Figure 2) Output Impedance VQ IOUTmax IQmax RL CL ZOUT 0.60*VA 0.65*VA 0.5*VA 10 100 3 100 100 0.70*VA Vpp VDC A A k pF 0.1 100 0.25 dB ppm/C (1 kHz) Symbol Min Typ 100 Max Unit dB
6
DS613PP2
CS4344/5/6/8
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs.) (See note 6)
Parameter Combined Digital and On-chip Analog Filter Response Passband (Note 2) Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation Group Delay De-emphasis Error (Note 5) Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz to -0.1 dB corner to -3 dB corner (Note 3) tgd to -0.05 dB corner to -3 dB corner Symbol Min 0 0 -.01 .5465 50 0 0 -.05 .5770 (Note 3) tgd to -0.1 dB corner to -3 dB corner 55 0 0 0 0.7 (Note 3) tgd 51 Typ 10/Fs 5/Fs 2.5/Fs Max .4780 .4996 +.08 +1.5/+0 +.05/-.25 -.2/-.4 .4650 .4982 +.2 0.397 0.476 +0.00004 Unit Fs Fs dB Fs dB s dB dB dB Fs Fs dB Fs dB s Fs Fs dB Fs dB s Single Speed Mode
Combined Digital and On-chip Analog Filter Response Passband (Note 2) Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation Group Delay Combined Digital and On-chip Analog Filter Response Passband (Note 2) Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation Group Delay Notes: 2. Response is clock dependent and will scale with Fs.
Double Speed Mode
Quad Speed Mode
3. For Single Speed Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs. For Double Speed Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs. For Quad Speed Mode, the Measurement Bandwidth is 0.7 Fs to 1 Fs. 4. Refer to Figure 2. 5. De-emphasis is available only in Single Speed Mode. 6. Amplitude vs. Frequency plots of this data are available in "Appendix" on page 21.
DS613PP2
7
CS4344/5/6/8
DIGITAL INPUT CHARACTERISTICS
Parameters High-Level Input Voltage Low-Level Input Voltage Input Leakage Current Input Capacitance 7. Iin for LRCK is 20 A max. (% of VA) (% of VA) (Note 7) Symbol VIH VIL Iin Min 55% Typ 8 Max 30% 10 Units V V A pF
POWER AND THERMAL CHARACTERISTICS
5 V Nom Parameters Symbol Power Supplies Power Supply Current normal operation IA (Note 8) power-down state (Note 9) IA Power Dissipation normal operation power-down state (Note 9) Package Thermal Resistance JA Power Supply Rejection Ratio (Note 8) (1 kHz) PSRR (60 Hz) Min Typ 22 220 110 1.1 95 60 40 Max 30 150 Min 3.3 V Nom Typ 16 100 53 0.33 95 60 40 Max 21 69 Units mA A mW mW C/Watt dB dB
8. Current consumption increases with increasing FS and increasing MCLK. Typ and Max values are based on highest FS and highest MCLK. Variance between speed modes is small. 9. Power down mode is defined when all clock and data lines are held static. 10. Valid with the recommended capacitor values on VQ and FILT+ as shown in the typical connection diagram in Section 3.
125 Capacitive Load -- C L (pF) 100 75 50 25 Safe Operating Region
3.3 F AO U Tx R C V o ut L L
AG N D
2.5 3
5
10
15
20
Resistive Load -- RL (k )
Figure 1. Output Test Load
Figure 2. Maximum Loading
8
DS613PP2
CS4344/5/6/8
SWITCHING CHARACTERISTICS - SERIAL AUDIO INTERFACE
Parameters MCLK Frequency MCLK Duty Cycle Input Sample Rate (Note 11) All MCLK/LRCK ratios combined 256x, 384x, 1024x 256x, 384x 512x, 768x 1152x 128x, 192x 64x, 96x 128x, 192x Fs Symbol Min 0.512 45 2 2 84 42 30 50 100 168 45 tsclkl tsclkh tslrd tslrs tsdlrs tsdh (Note 12) (Note 13) tsclkw tsclkr tsdlrs tsdh tsdh 20 20 45 20 20 20 20 10 9 ---------------SCLK
Typ -
Max 50 55 200 50 134 67 34 100 200 200
Units MHz % kHz kHz kHz kHz kHz kHz kHz kHz % ns ns % ns ns ns ns % ns s ns ns ns
External SCLK Mode LRCK Duty Cycle (External SCLK only) SCLK Pulse Width Low SCLK Pulse Width High SCLK Duty Cycle SCLK rising to LRCK edge delay SCLK rising to LRCK edge setup time SDIN valid to SCLK rising setup time SCLK rising to SDIN hold time Internal SCLK Mode LRCK Duty Cycle (Internal SCLK only) SCLK Period SCLK rising to LRCK edge SDIN valid to SCLK rising setup time SCLK rising to SDIN hold time MCLK / LRCK =1152, 1024, 512, 256, 128, or 64 SCLK rising to SDIN hold time MCLK / LRCK = 768, 384, 192, or 96 50 tsclkw ----------------2
50 50 -
55 55 -
10 9 --------------------- + 10 ( 512 )Fs 10 9 --------------------- + 15 ( 512 )Fs 10 9 --------------------- + 15 ( 384 )Fs
-
Notes: 11. Not all sample rates are supported for all clock ratios. See table "Common Clock Frequencies" on page 12 for supported ratio's and frequencies. 12. In Internal SCLK Mode, the Duty Cycle must be 50% +/- 1/2 MCLK Period. 13. The SCLK / LRCK ratio may be either 32, 48, 64, or 72. This ratio depends on part type and MCLK/LRCK ratio. (See figures 7-9)
DS613PP2
9
CS4344/5/6/8
LRCK t slrd t slrs t sclkl t sclkh
SCLK t sdlrs
SDATA
t sdh
Figure 3. External Serial Mode Input Timing
LR C K
t s clkr
S D A TA t sclkw t sdlrs *IN TE R N AL S C L K t sdh
Figure 4. Internal Serial Mode Input Timing * The SCLK pulses shown are internal to the CS4344/5/6/8.
LRCK
MCLK
1 *INTERNAL SCLK N 2 N
SDATA
Figure 5. Internal Serial Clock Generation * The SCLK pulses shown are internal to the CS4344/5/6/8. N equals MCLK divided by SCLK
10
DS613PP2
CS4344/5/6/8
3.TYPICAL CONNECTION DIAGRAM
Note* = This circuitry is intended for applications where the CS4344/5/6/8 connects directly to an unbalanced output of the design. For internal routing applications please see the DAC analog output characteristics for loading limitations.
+ 9 VA 0.1 F 1 F
+3.3 V to +5 V
Note*
1 Audio Data Processor 2 3 SDIN DEM/SCLK LRCK AOUTL 7 + 10 k C Rext 3.3 F 470 Left Audio Output
CS4344 CS4345 AOUTR 10 CS4346 CS4348
3.3 F + 10 k
470
Right Audio Output
C
Rext
External Clock
4
MCLK
FILT+
6 10 F C= Rext + 470 4Fs(Rext
For best 20 kHz response 470)
+ VQ 5 0.1 F
AGND 8
*3.3 F or *10 F
*Popguard ramp can be adjusted by selecting this capacitor value to be 3.3 F to give 250 ms ramp time or 10 F to give a 420 ms ramp time.
Figure 6. Recommended Connection Diagram
+
DS613PP2
11
CS4344/5/6/8
4.APPLICATIONS
The CS4344 family accepts data at standard audio sample rates including 48, 44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via the serial data input pin (SDIN). The Left/Right Clock (LRCK) determines which channel is currently being input on SDIN, and the optional Serial Clock (SCLK) clocks audio data into the input data buffer. The CS4344/5/6/8 differ in serial data formats as shown in Figures 7-10.
4.1 Master Clock
MCLK/LRCK must be an integer ratio as shown in Table 1. The LRCK frequency is equal to Fs, the frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and speed mode is detected automatically during the initialization sequence by counting the number of MCLK transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are set to generate the proper clocks. Table 1 illustrates several standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but MCLK, LRCK and SCLK must be synchronous.
LRCK 64x 96x 128x (kHz) 32 44.1 48 64 8.1920 88.2 11.2896 96 12.2880 128 8.1920 12.2880 176.4 11.2896 16.9344 22.5792 192 12.2880 18.4320 24.5760 Mode QSM 192x 12.2880 16.9344 18.4320 33.8680 36.8640 MCLK (MHz) 256x 384x 8.1920 12.2880 11.2896 16.9344 12.2880 18.4320 22.5792 33.8680 24.5760 36.8640 32.7680 49.1520 DSM 512x 22.5792 24.5760 32.7680 768x 1024x 1152x 36.8640 -
32.7680 33.8680 45.1580 36.8640 49.1520 49.1520 SSM
Table 1. Common Clock Frequencies
4.2 Serial Clock
The serial clock controls the shifting of data into the input data buffers. The CS4344 family supports both external and internal serial clock generation modes. Refer to Figures 7-10 for data formats.
4.2.1 External Serial Clock Mode
The CS4344 family will enter the External Serial Clock Mode when 16 low to high transitions are detected on the DEM/SCLK pin during any phase of the LRCK period. When this mode is enabled, the Internal Serial Clock Mode and de-emphasis filter cannot be accessed. The CS4344 family will switch to Internal Serial Clock Mode if no low to high transitions are detected on the DEM/SCLK pin for 2 consecutive frames of LRCK. Refer to Figure 12.
12
DS613PP2
CS4344/5/6/8
4.2.2 Internal Serial Clock Mode
In the Internal Serial Clock Mode, the serial clock is internally derived and synchronous with MCLK and LRCK. The SCLK/LRCK frequency ratio is either 32, 48, 64, or 72 depending upon data format. Operation in this mode is identical to operation with an external serial clock synchronized with LRCK. This mode allows access to the digital de-emphasis function. Refer to Figures 7 - 12 for details.
LR C K SCLK
Le ft C ha n nel
R ig h t C ha n nel
SDATA
MSB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB -1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Internal SCLK Mode I2S, 16-Bit data and INT SCLK = 32 Fs if MCLK/LRCK = 1024, 512, 256, 128, or 64 I2S, Up to 24-Bit data and INT SCLK = 48 Fs if MCLK/LRCK = 768, 384, 192, or 96 I2S, Up to 24-Bit data and INT SCLK = 72 Fs if MCLK/LRCK = 1152
External SCLK Mode I2S, up to 24-Bit Data Data Valid on Rising Edge of SCLK
Figure 7. CS4344 Data Format (I2S)
LR C K SCLK
Le ft C ha n nel
R ig h t C ha n nel
SDATA
M SB -1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LS B
M SB -1 -2 -3 -4
+5 +4 +3 +2 +1 LS B
Internal SCLK Mode Left Justified, up to 24-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 1024, 512, 256, 128, or 64 INT SCLK = 48 Fs if MCLK/LRCK = 768, 384, 192, or 96 INT SCLK = 72 Fs if MCLK/LRCK = 1152
External SCLK Mode Left Justified, up to 24-Bit Data Data Valid on Rising Edge of SCLK
Figure 8. CS4345 Data Format (Left Justified)
DS613PP2
13
CS4344/5/6/8
R igh t C h ann el
LR C K
Le ft C ha n nel
SCLK
SDATA
0
23 22 21 20 19 18
7
6
5
4
3
2
1
0
23 22 21 20 19 18
7
6
5
4
3
2
1
0
Internal SCLK Mode Right Justified, 24-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 1024, 512, 256, 128, or 64 INT SCLK = 48 Fs if MCLK/LRCK = 768, 384, 192, or 96 INT SCLK = 72 Fs if MCLK/LRCK = 1152
32 clocks
External SCLK Mode Right Justified, 24-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 48 Cycles per LRCK Period
Figure 9. CS4346 Data Format (Right Justified 24)
LR CK
L e ft C h a nn e l
R ig ht C h a n ne l
SCLK
SDATA
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Internal SCLK Mode 32 clocks Right Justified, 16-Bit Data INT SCLK = 32 Fs if MCLK/LRCK = 1024, 512, 256, 128, or 64 INT SCLK = 48 Fs if MCLK/LRCK = 768, 384, 192, or 96 INT SCLK = 72 Fs if MCLK/LRCK = 1152
External SCLK Mode Right Justified, 16-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 32 Cycles per LRCK Period
Figure 10. CS4348 Data Format (Right Justified 16)
4.3 De-Emphasis
The CS4344 family includes on-chip digital de-emphasis. Figure 11 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs. The de-emphasis filter is active (inactive) if the DEM/SCLK pin is low (high) for 5 consecutive falling edges of LRCK. This function is available only in the internal serial clock mode.
14
DS613PP2
CS4344/5/6/8
Gain dB T1=50 s 0dB
T2 = 15 s
-10dB
F1 3.183 kHz
F2 Frequency 10.61 kHz
Figure 11. De-Emphasis Curve (Fs = 44.1kHz)
4.4 Initialization and Power-Down
The Initialization and Power-Down sequence flow chart is shown in Figure 12. The CS4344 family enters the Power-Down State upon initial power-up. The interpolation filters and delta-sigma modulators are reset, and the internal voltage reference, multi-bit digital-to-analog converters and switched-capacitor lowpass filters are powered down. The device will remain in the Power-Down mode until MCLK and LRCK are present. Once MCLK and LRCK are detected, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio. Power is then applied to the internal voltage reference. Finally, power is applied to the D/A converters and switched-capacitor filters, and the analog outputs will ramp to the quiescent voltage, VQ.
4.5 Output Transient Control
The CS4344 family uses PopguardTM technology to minimize the effects of output transients during powerup and power-down. This technique eliminates the audio transients commonly produced by single-ended single-supply converters when it is implemented with external DC-blocking capacitors connected in series with the audio outputs. To make best use of this feature, it is necessary to understand its operation.
4.5.1 Power-up
When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to VQ which is initially low. After MCLK is applied the outputs begin to ramp with VQ towards the nominal quiescent voltage. This ramp takes approximately 250 ms with a 3.3 F cap connected to VQ (420 ms with a 10 F connected to VQ) to complete. The gradual voltage ramping allows time for the external DC-blocking capacitors to charge to VQ, effectively blocking the quiescent DC voltage. Once valid LRCK and SDIN are supplied (and SCLK if used) approximately 2000 sample periods later audio output begins.
4.5.2 Power-down
To prevent audio transients at power-down the DC-blocking capacitors must fully discharge before turning off the power. In order to do this MCLK should be stopped for a period of about 250 ms for a 3.3 F cap connected to VQ (420 ms for a 10 F cap connected to VQ) before removing power. During this time voltage on VQ and the audio outputs discharge gradually to GND. If power is removed before this time period has passed a transient will occur when the VA supply drops below that of VQ. There is no minimum time for a power cycle, power may be re-applied at any time.
DS613PP2
15
CS4344/5/6/8
USER: Apply Power
VQ and outputs ram p down
Power-Down State
VQ and outputs low
VQ and outputs ram p down
USER: Apply MCLK USER: Rem ove MCLK VQ and outputs ram p up USER: Rem ove MCLK
USER: Rem ove LRCK
W ait State
USER: Rem ove LRCK
USER: Apply LRCK
USER: change MCLK/LRCK ratio
MCLK/LRCK Ratio Detection
USER: change MCLK/LRCK ratio
USER: No SCLK
USER: Applied SCLK
SCLK m ode = internal
SCLK m ode = external
Norm al Operation De-em phasis available
Norm al Operation De-em phasis not available
Analog Output is Generated
Analog Output is Generated
Figure 12. CS4344/5/6/8 Initialization and Power-Down Sequence
16
DS613PP2
CS4344/5/6/8
When changing clock ratio or sample rate it is recommended that zero data (or near zero data) be present on SDIN for at least 10 LRCK samples before the change is made. During the clocking change the DAC outputs will always be in a zero data state. If no zero audio is present at the time of switching, a slight click or pop may be heard as the DAC output automatically goes to it's zero data state.
4.6 Grounding and Power Supply Decoupling
As with any high resolution converter, the CS4344 family requires careful attention to power supply and grounding arrangements to optimize performance. Figure 6 shows the recommended power arrangement with VA connected to a clean +3.3 V or +5 V supply. For best performance, decoupling and filter capacitors should be located as close to the device package as possible with the smallest capacitors closest.
4.7 Analog Output and Filtering
The analog filter present in the CS4344 family is a switched-capacitor filter followed by a continuous time low pass filter. Its response, combined with that of the digital interpolator, is given in Figures 13 - 20. The recommended external analog circuitry is shown in the "Typical Connection Diagram" on page 11.
DS613PP2
17
CS4344/5/6/8
5.PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N) The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Dynamic Range The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full scale analog output for a full scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/C.
18
DS613PP2
CS4344/5/6/8
6.ORDER INFORMATION:
Model CS4344-CZZ CS4344-DZZ CS4345-CZZ CS4346-CZZ CS4348-CZZ Temperature -10 to +70 C -40 to +85 C -10 to +70 C -10 to +70 C -10 to +70 C Package 10-pin Plastic TSSOP - Lead-Free 10-pin Plastic TSSOP - Lead-Free 10-pin Plastic TSSOP - Lead-Free 10-pin Plastic TSSOP - Lead-Free 10-pin Plastic TSSOP - Lead-Free Serial Interface 16 to 24-bit, I2S 16 to 24-bit, I2S 16 to 24-bit, left justified 24-bit, right justified 16-bit, right justified
7.FUNCTIONAL COMPATIBILITY
CS4334-KS CS4344-CZZ CS4335-KS CS4345-CZZ CS4336-KS CS4346-CZZ CS4338-KS CS4348-CZZ CS4334-BS CS4344-DZZ CS4334-DS CS4344-DZZ
DS613PP2
19
CS4344/5/6/8
8.PACKAGE DIMENSIONS
10LD TSSOP (3 mm BODY) PACKAGE DRAWING
N
D c E A2 A1 SEATING PLANE A
E11
e b
L L1
END VIEW
123
SIDE VIEW
TOP VIEW
INCHES DIM A A1 A2 b c D E E1 e L L1 MIN -0 0.0295 0.0059 0.0031 ----0.0157 -0 NOM -----0.1181 BSC 0.1929 BSC 0.1181 BSC 0.0197 BSC 0.0236 0.0374 REF -MAX 0.0433 0.0059 0.0374 0.0118 0.0091 ----0.0315 -8 MIN -0 0.75 0.15 0.08 ----0.40 -0
MILLIMETERS NOM -----3.00 BSC 4.90 BSC 3.00 BSC 0.50 BSC 0.60 0.95 REF -MAX 1.10 0.15 0.95 0.30 0.23 ----0.80 -8
NOTE
4, 5 2 3
Controlling Dimension is Millimeters Notes: 1. Reference document: JEDEC MO-187 2. D does not include mold flash or protrusions which is 0.15 mm max. per side. 3. E1 does not include inter-lead flash or protrusions which is 0.15 mm max per side. 4. Dimension b does not include a total allowable dambar protrusion of 0.08 mm max. 5. Exceptions to JEDEC dimension.
20
DS613PP2
CS4344/5/6/8
9.APPENDIX
Figure 13. Single Speed Stopband Rejection
Figure 14. Single Speed Transition Band
Figure 15. Single Speed Transition Band
Figure 16. Single Speed Passband Ripple
DS613PP2
21
CS4344/5/6/8
Figure 17. Double Speed Stopband Rejection
Figure 18. Double Speed Transition Band
Figure 19. Double Speed Transition Band
Figure 20. Double Speed Passband Ripple
22
DS613PP2
CS4344/5/6/8
0
0
-10
-10
-20
-30
-20
-40 Amplitude (dB)
Amplitude (dB) -30
-50
-60
-40
-70
-50
-80
-60
-90
-100 0 0.1 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 0.9 1
0.35 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 0.7 0.75
Figure 21. Quad Speed Stopband Rejection
Figure 22. Quad Speed Transition Band
0 0.2 -5 0.15 -10 -15 -20 -25 -30 -35 -0.1 -40 -0.15 -45 -0.2 -50 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 0.7 0.05 0.1 0.15 0.2 0.25 0.3 Frequency(normalized to Fs) 0.35 0.4 0.45 0.1
0.05 Amplitude (dB)
Amplitude (dB)
0
-0.05
Figure 23. Quad Speed Transition Band
Figure 24. Quad Speed Passband Ripple
DS613PP2
23


▲Up To Search▲   

 
Price & Availability of CS4348-CZZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X